Physics for future
Presidents
Supreme Court
Justices, Congressmen, CEOs,
Diplomats,
Journalists, and other World Leaders
Fall 2007 Edition
Richard
A. Muller
Department
of Physics
University
of California at Berkeley
www.muller.lbl.gov
Copyright 2007,
Richard A. Muller
ISBN 142662901X
Table of Contents
Chapter 1 – Energy and Power,
and the physics of explosions.
Calorie, Joule,
and kilowatt-hour. Energy in various substances. Surprises: TNT and
cookies, gasoline and
batteries, electric car hype,
hybrid non-hype. Fuel cells. Hydrogen as a means of transporting energy. Uranium, gasoline, and TNT. Cheap
coal. Forms of energy. Power. Conservation of energy. Horsepower. Human power. Solar power.
Exercise and diet. Wind power. Cost of energy. Kinetic energy.
Anti-ballistic-missile systems: Smart rocks and brilliant pebbles. The demise of the dinosaurs.
Chapter
2. Atoms and Heat.
Quandaries. Atoms
and molecules and the meaning of heat. Periodic table. Speed of sound and
light. Energy in heat. Hiss and noise. Temperature. Laws of thermodynamics.
Hydrogen escape from atmosphere.
Cold death. Temperature scales: F, C, K. Thermal expansion. Global
warming and sea level rise. Thermometers. Space Shuttle tragedy. Solid, liquid, gas, and plasma. Solid,
liquid, gas, and plasma. Explosions. Ideal gas law. Airbags, sauting,
firewalking. Heat engines. Wasted energy.
Refrigerators and heat pumps.
Laws of Thermodynamics. Heat flow. Entropy and disorder.
Chapter
3. Gravity and force.
Gravity
surprises. The force of
gravity. Newton's third law.
"Weightless" astronaut. Key orbits: LEO, MEO, and HEO. Rock and sling. Geosynchronous. Spy
satellites. GPS location. Oil exploration. Manufacturing in space. Escape
velocity. Gravity in science
fiction. Falling to Earth. The X Prize. Auto air resistance and
efficiency. Force and
acceleration. The g-rule. Rail gun. Circular acceleration. Escape to space.
Black holes. Momentum. Rockets. Balloons. Skyhook. Ion rockets. Flying:
airplanes, helicopters, balloons. Floating on water. Air pressure. Hurricanes and storm surge. Convection,
thunderstorms, and heaters. Angular momentum and torque.
Chapter
4. Nuclei and radioactivity.
Paradoxes and puzzles. The nucleus and its explosion. Protons,
electrons, neutrons, quarks and gluons. Isotopes. Radiation. Cloud chamber.
Radiation and death: the "rem". LD50. Poisoning and cancer. Linear hypothesis. Chernobyl.
Hiroshima cancer. Denver exposure. Tooth and chest x-ray doses. Ultrasound.
Radiation to cure cancer. Dirty bomb. Alpha, beta, gamma rays and more. Natural
radioactivity. Half life rule. Power for satellites from RTGs. Radioisotope
dating: potassium-argon, and radiocarbon. Environmental radioactivity. Why aren't all atoms radioactive? Optional: tunneling and the weak force
of radioactivity. Forensics:
neutron activation. Watch dials. Plutonium. Fission. Fusion. Power from the Sun.
Chapter
5. Chain reactions, nuclear reactors, and atomic bombs
Chain reactions
and the doubling rule (exponential growth): examples from chess, nuclear bombs,
fetal growth, cancer, population (and Malthus), mass extinction recovery, PCR,
germs, computer viruses, urban legends, avalanches, sparks and lightning, compound
interest, Moore's Law, folding paper, and tree branches. Nuclear weapons basics. Critical mass. Uranium gun bomb. Uranium enrichment; calutron and
centrifuges. Plutonium implosion
bomb. Thermonuclear "hydrogen
bomb". Boosted bombs. Atomic bombs. Fallout.
Nuclear reactors. Plutonium production. Breeder reactors. Dangers:
cancer, and the plutonium economy. Depleted uranium. Gabon natural reactor.
Fuel requirements. Nuclear waste. Yucca Mountain. China syndrome. Three-mile island. Chernobyl. Paradoxes. Present stockpile.
Chapter
6. Electricity and magnetism.
Compared to
gravity. Charge. Current; amps.
Wires and electron pipes. Resistance. Conductors, semiconductors and
superconductors. Fuses and circuit breakers. High temperature superconductors.
Volts. Static electricity. Electric power. Frog legs and Frankenstein. House
power. High tension lines. Electricity creates magnetism: Magnets, N & S,
permanent, rare-earth, electromagnets. Monopoles? Short range. Electric and magnetic fields. Iron. Magnetic
recording; hard drives. Curie temperature. Submarine location. Electric motors.
Magnetism creates electricity: electric generators. Dynamos. The Earth, and its magnetic flips.
Geology applications. Transformers.
The Edison/Tesla competition: AC vs. DC. Magnetic levitation. Rail guns,
again. Automobile battery.
Flashlight batteries.
Chapter
7. Waves
Mysterious uses
of waves: UFOs near Roswell, New Mexico, and Sofar rescuing of pilots in World
War II. What are waves? Wave packets and quantum physics. Sound. Sound speed. Transverse and longitudinal. Water surface waves. Tsunamis. Period, frequency, and wavelength. Bending. Sound channel in the ocean and atmosphere. Sofar and Roswell explained. Whale
songs. GPS again. Ozone layer. Earthquakes. Magnitude and epicenter. P, S, L
waves. Estimating distance rule.
Liquid core of the Earth. Bullwhips. Waves cancel, reinforce. Beats.
Musical notes. The ear. Noise
canceling earphones. Doppler
shift. Huygens's principle.
Chapter 8. Light
High tech light.
Electromagnetic waves. Light communication and information theory: the bit and
the baud rate. Color and color perception. Rods and cones. White and
pseudo-white. Color blindness.
Multispectra. Printed color. Oil
slick. Images. Pinhole camera. Eyes. Mirrors. Magic with mirrors.
Retroreflectors. Corner reflector. Stealth. Slow light. Index of refraction. Mirages. Diamonds, dispersion, and
fire. Prism. Counterfeit diamonds. Other illusions: swimming pools and milk
glasses. Rainbows. Lenses. The eye, again. Variable lens.
Nearsighted and farsighted. Red eye and stop signs. Microscopes and telescopes. Spreading light. Diffraction.
Blurring, and spy satellite limits. Holograms. Polarization. Polarized sunglasses. Crossed polarizers. Liquid crystals and
LCD screens. 3-D movies.
Chapter 9. Invisible light.
Anecdote: illegal
immigrants seen in the dark. Infrared. Thermal radiation and temperature. Red,
white, and blue-white hot. Brown paint for cool roofs. Power radiated by warm object: 4th
power. Tungsten inefficiency. Heat lamps. Dew on sleeping bags. Remote sensing of temperature. Weather
satellites. Military special ops: "we own the night". Stinger missiles, pit vipers, and
mosquitoes. UV and "black lights". Whiter than white.
Sunburn. Germicidal lamps. Windburn. Ozone layer.
Freon, CFCs, and the ozone hole. Greenhouse effect and carbon
dioxide. Seeing through dust and
smoke; firefighting.
Electromagnetic spectrum.
Radio, radar, microwaves, x-rays and gammas. Radar images. Medical imaging:
x-rays, MRI (NMR), CAT, PET (antimatter), thermography, ultrasound. Bats. X-ray backscatter. Picking locks.
Chapter 10. Quantum
physics.
High tech is
largely based on quantum physics. Electron waves. Spectra, and remote sensing.
Einstein discovers photons. Laser
– a quantum chain reaction. Laser applications: supermarkets, cleaning,
weapons. Controlled thermonuclear
fusion using lasers. Lasers and eyes.
LASIK surgery. Solar cells
and digital cameras. Image
intensifiers and night vision.
Xerox machines and laser printers. Compact disks and DVDs. More on gamma rays and x-rays. Fiber optics limits from quantum
physics. Are photons real?
Semiconductor electronics.
Light-emitting diodes – LEDs; traffic lights and stadium TV
screens. Diode lasers. Diodes to turn AC into DC. Transistor amplifiers and transistor radios. Computer circuits. Superconductors, again. Electron
microscope. Quantization of waves. Uncertainty principle. Tunneling and alpha
radiation. Tunnel diodes. Scanning
tunneling microscopes (STMs).
Quantum computers.
Chapter 11. Relativity
The nature of
time. Fourth dimension. Time dilation.
Twin paradox. The Einstein
gamma factor. Time depends on
velocity. Not all motion is
relative. Length "Lorentz" contraction. Relative velocities.
Invariance of the speed of light.
Energy and mass. E = mc2.
Converting energy to mass. Antimatter engines. Zero rest mass of a
photon. Massless particles have no time.
Mass of neutrinos. Why you
can't get to light speed. Atomic bomb and relativity. Tachyons.
Simultaneity. Pondering
time.
Chapter 12. The Universe
Puzzles. How can
the Universe expand? What came
before the beginning? The Solar
System. Companion star? Planets
around other stars. The Milky
Way. Galaxies. Dark matter. WIMPs and MACHOs. Extraterrestrial life
and Drake's equation. SETI. Looking back in time. Expansion of the
Universe. Hubble's Law. The beginning. Dark energy. The Big Bang. The 3K cosmic microwave
radiation – created in the Big Bang. Gravity and Relativity. Twins in gravity.
Black holes, again. Finite
Universe? Before the Big
Bang. A Theory of Everything. The
Creation (a poem)
Preface
Physics is the liberal arts of high tech
Physics
for future Presidents? Yes, that is a serious
title. Energy, global warming, terrorism and counter-terrorism, health,
internet, satellites, remote sensing, ICBMs and ABMs, DVDs and HDTVs --
economic and political issues increasingly have a strong high tech content.
Misjudge the science, make a wrong decision. Yet many of our leaders never
studied physics, and do not understand science and technology. Even my school,
the University of California at Berkeley, doesn't require physics. Physics for future Presidents (or PffP) is designed to address that
problem. Physics is the liberal arts of high technology. Understand physics, and never again be
intimidated by technological advances. PffP is designed to attract students,
and teach them the physics they need to know to be an effective world leader.
Is
science too hard for world leaders to learn? No, it is just badly taught. Think of an analogous example: Charlemagne was only half
literate. He could read but not write. Writing was a skill considered too tough
even for world leaders, just as physics is today. And yet now most of the world
is literate. Many children learn
to read before kindergarten. Literacy in China is 84% (according to the OECD).
We can, and must achieve the same level with scientific literacy, especially
for our leaders.
This
course is based on several decades of experience I've had presenting tough
scientific issues to top leaders in government and business. My conclusion is that these people are
smarter than most physics professors.
They readily understand complex issues, even though they don't relax by
doing integrals. (I know a physics professor who does.) PffP is not Physics for
Poets, Physics for Jocks, or for Physics for Dummies. It is the physics you need to know be an effective world leader.
Can
physics be taught without math? Of
course! Math is a tool for
computation, but it is not the essence of physics. We often cajole our advanced students, "Think physics,
not math!" You can understand and even compose music without studying
music theory, and you can understand light without knowing Maxwell's equations.
The goal of this course is not to create mini-physicists. It is to give future
world leaders the knowledge and understanding that they need to make decisions.
If they need a computation, they can always hire a physicist. But the knowledge of physics will help
them judge, on their own, if the physicist is right. Let me illustrate what can be taught by telling a
short story that I share with my students in the first lecture. It tells them what I want from them.
An ideal student
Liz,
a former student of my class, came to my office hour, eager to share a
wonderful experience she had had a few days earlier. Her family had invited a
physicist over for dinner, someone who worked at the Lawrence Livermore
National Laboratory. He regaled them through the dinner with his stories of
controlled thermonuclear fusion, and its great future for the power needs of
our country. According to Liz, the family sat in awe of this great man
describing his great work. Liz
knew more about fusion than did her parents, because we had covered it in our
class.
There
was a period of quiet admiration at the end. Finally Liz spoke up. "Solar power has a future
too," she said.
"Ha!"
the physicist laughed. (He didn't
mean to be patronizing, but this is a typical tone physicists affect.) "If you want enough power just for
California," he continued, "you'd have to plaster the whole state
with solar cells!"
Liz
answered right back. "No,
you're wrong," she said.
"There is a gigawatt in a square kilometer of sunlight, and that's
about the same as a nuclear power plant."
Stunned
silence from the physicist. Liz
said he frowned. Finally he said,
"Hmm. Your numbers don't
sound wrong. Of course, present
solar cells are only 15% efficientÉ but that's not a huge factor. Hmm. I'll have to check my numbers."
YES!! That's what I want my students to be
able to do. Not integrals, not
roller-coaster calculations, not pontifications on the scientific method or the
deep meaning of conservation of angular momentum. She was able to shut up an
arrogant physicist who hadn't done his homework! Liz hadn't just memorized facts. She knew enough about the subject of energy that she could
confidently present her case under duress when confronted by a supposed expert.
Her performance is even more impressive when you recognize that solar power is
only a tiny part of this course. She
remembered the important numbers because she had found them fascinating and
important. She hadn't just
memorized them, but had thought about them and discussed them with her
classmates. They had become part
of her, a part she could bring out and use when she needed them, even a year
later.
Physics
for the future leader
PffP is
not watered-down physics. It is advanced physics. It covers the most interesting and most important topics.
Students recognize the value of what they are learning, and are naturally
motivated to do well. In every chapter they find material they want to share
with their friends, roommates, and parents. Rather than keep the students
beneath the math glass ceiling, I take them way above it. "You don't have the time or the
inclination to learn the math," I tell them. "So we'll skip over that part, and get to the important
stuff right away." I then
teach them things that ordinary physics students don't learn until after they earn their Ph.D.
The typical
physics major, even the typical Ph.D., does not know the material in this book.
He (and increasingly she) knows little to nothing about nukes, optics,
fluids, batteries, lasers, IR and UV, x-rays and gamma rays, MRI, CAT, and PET
scans. Ask a physics major how a nuclear bomb works and you'll hear what the
student learned in high school.
For that reason, at Berkeley we have now opened this course for physics
majors to take. It is not baby physics. It is advanced physics.
I must confess
that I made one major concession to my Berkeley students. They really do want to learn about
relativity and cosmology, subjects superfluous for world leadership, but
fascinating to thinking people. So
I added two chapters at the end. They cover subjects that every educated person
should know, but they won't help the President make key decisions.
The response to this new approach has been
fantastic. Enrollment grew mostly
by word-of-mouth from 34 students (Spring 2001) to over 500 (Fall 2006). The
class now fills up the largest physics-ready lecture hall at Berkeley. Many of my students previously hated
physics, and swore (after their high school class) never to take it again. But they are drawn, like moths to
a flame, to a subject they find fascinating and important. My job is to make
sure their craving is fulfilled, and that they won't be burned again. These
students come to college to learn, and they are happiest when they sense their
knowledge and abilities growing.
Students
don't take the course because it is easy; it isn't. It covers an enormous
amount of material. But every
chapter is full of information that is evidently important. That's why students sign up. They don't want to be entertained. They want a good course, well taught,
that fills them with important information and the ability to use it well. They
are proud to take this course, but more importantly, they are very proud that
they enjoy it.
For the instructor:
pedagogy
PffP is fun to teach and fun to take, but it is unlike other
courses in qualitative physics. I
have used several ideas that are unusual. Instructors for this course may find
it helpful to understand these.
Immersion
I teach by total immersion. Physics majors take one to four years to get a sense of what
energy means. They don't learn it from the definition. So in PffP I start using the term, with
many, many examples. Students feel
as if they are walking into a foreign language class in which the teacher
starts speaking Spanish immediately.
After a semester of using the word "energy" every class, the
student is beginning to understand what physicists mean by the term.
Motivate and
Intrigue
Many students in this class are afraid of physics, sometimes
because of a bad experience in high school. So the first step is to get them so interested that they
forget their fear. Chapters
usually begin with a story, anecdote, or puzzling facts. The purpose is to make the student
wonder, "how can that be?"
Some of important and
intriguing applications are mentioned at the beginning rather than being
appended at the end.
The
order of topics, and the structure of the chapters is not traditional. There is
no need to put "modern physics" last, following historical
order. The students are eager to
learn new exciting things, and in total immersion, there is no need to
wait. I introduce atomic and
nuclear physics early. My goal is
to motivate the student by putting the most fascinating topics first. Energy is in chapter 1, explosions in
2, spy satellites in 3, radioactivity in 4, nukes in 5. The students get hooked early. By the
time we get to waves, light, and integrated circuits, the student is warmed up,
and ready to find those exciting too.
Images and Figures
I can't overemphasize the importance of motivation. The images and figures are chosen to be
intriguing. When the student
thumbs through the book, the images should stir the curiosity. "What is that?" "That's
amazing!" "I'd love to
understand that." Not all the
images and figures meet this standard, but I tried to make as many as possible
that would stir the interest of the student.
Physics as a
Second Language
I don't tell
them that journalists and politicians confuse energy and power. These words existed before physics gave
them precise definitions. I ask my
students to learn physics as a second language, and to be able to use physics
terms in their specialized physics sense when talking to other physics-literate
people. This avoids passing on the arrogance that physicists often affect.
Multiple Levels
Classes can be large and have a wide variety of interests and
abilities. There are English
majors, music majors, math majors and physics majors. Some want more math.
To handle this, in lecture I often go into advanced calculations, after
stating that it is not required. So, for example, announce that the next five
minutes of lecture are not required; students are allowed to sleep. Then I show (for example) how the
relativistic energy equation reduces to Newtonian kinetic energy, satisfying
the correspondence principle.
Remarkably, the students who "hate" math continue paying
attention. It is fun, as long as
they aren't required to reproduce it.
I do the same in the text by explicitly stating when something is
optional.
Don't cover
everything in lecture
In liberal arts classes, the lectures make no attempt to cover
all the material. Students for
PffP are accustomed to learning things on their own. I spend the lectures on the most subtle material, or the
most interesting (and therefore motivational), but I tell the students that
they are required to learn on their own everything in the text that is not
marked as optional.
Homework
To make this course attractive, I surveyed my students to find
out what kind of homework they got in the non-physics courses they liked. The answer was simple: reading and
writing. To address the former, I
tried to write a textbook that was fun to read. I wanted the students to read the chapter through, without
distraction by standard physics pedagogy (e.g. "check your understanding"). Then, to study, they should read it
again.
Many
of my students are freshmen, and to make sure that they did the reading on time
I gave frequent short multiple-choice quizzes. These were meant to be easy for anyone who had read (but not
yet studied) the chapter, but hard to guess if the student hadn't. These questions appear at the ends of
the chapters.
I was surprised to discover that prior
to taking PffP, most of my students did not normally read newspaper articles
about science and technology. To
break this bad habit, many of the homework assignments consist of the
following: find a newspaper article that has physics or technology content, and
write two paragraphs summarizing it. You can earn a high score even if you
don't understand the article, if you state what it was that you didn't
understand. (Of course, I have a secret goal. Once students clearly identify what they don't understand,
they are 90% of the way towards understanding it.) In semester-end comments from students, a common comment
was: "I didn't know articles like that were for me!"
I
tell students that most homework will get a grade of 2 – meaning nice
job, and we didn't have time to grade in any more detail. However, if they have a spelling or
grammar error, they get a grade of 1.
If the paragraphs they write are so well done that the teaching
assistant notices and enjoys reading it, they might earn a rare 3.
For
the first homework, a very large fraction of the class is sloppy and earns a
1. Within a few weeks, the writing
improves dramatically. Some
seniors have told me that this was more writing than they did for any other
course, and even though the grading was not detailed, this regular practice
improved their writing.
Exams
My exams consist 50% of essays and 50% of multiple-choice
questions. My goal is to make students knowledgeable and
articulate on the physics and technological aspects of important issues. I give
examples of suggested essay questions at the end of every chapter. If you don't have the resources to
grade essays, then you can give exams consisting solely of multiple choice
questions. I give examples of
these too, taken from my own exams.
The average student at Berkeley gets 75% of these correct, to earn a B
in the course.
Numbers
It is important for the student to be able to understand the
use of large and small numbers. But I don't require them to do this themselves.
We review scientific notation in the first discussion sections. I don't ask students to manipulate such
numbers, but only to be able to follow it when I do. The highest priority is
not to teach computation. I want
them to know what is important, what is negligible, and how physics illuminates
complex phenomena. I want them to
be able to tell when something they are hearing is probably wrong.
Policy and
Politics
I emphasize physics and try hard to eliminate policy and
politics. I try to cover the technical aspects that one must understand in
order to make wise decisions, and I try to avoid most of the non-technical
aspects of the issues. One of my
proudest teaching moments occurred in 2006 when a student asked permission for
a personal question. He wanted to
know my "politics". I
was proud that in a class that discusses energy, nukes, technology of war,
global warming, and high tech, he couldn't figure out whom I had voted
for. (And I didn't tell him.) It is important to show that physics
questions do not have a political spin.
We can all agree on the physics.
When tricky issues are raised (such as the plutonium economy) I try to
give the strongest arguments on all sides. Then it is up to the students to think about the subject and
decide their own positions.
The
students try but can't put me in a category of, for example, pro-nuke or
anti-nuke. I don't care what their opinion is. I teach them the plusses and minuses of nuclear power, and
let them choose themselves.
Lectures online
My lectures are available for free online at UC, on
video.google.com, and they are podcast at www.apple.com/podcasting. Links can
also be found on my web page, www.muller.lbl.gov. In one lecture, I asked
anyone who was watching or listening outside of Berkeley to email me. The response astounded me. As of this writing (2006), I have
received email from 42 countries, including Malaysia, Mali, Tibet, Turkey,
Kenya, Saudi Arabia and Iraq.
Respect
Respect of the student is essential. I treat each student tin
my class with my expectation that he or she will someday be President, if not
of the United States, then at least of a major company. Educating the future
leaders is not just fun, it is a duty.
I avoid cartoons and other images that suggest the student is "just
a kid". Pictures and writing
should approximate the kind that adults like, perhaps what they expect to see
in a magazine such as The Economist.
This really is physics for future presidents.
What I don't teach
I don't teach problem solving. I don't think that is possible to do in one semester. If these students ever need to
calculate the velocity of a roller-coaster, they'll hire a physicist.
I
don't explicitly teach the scientific method. There are two reasons for this. The first is that students find it patronizing and boring. The second (if a second one is needed)
is that I don't consider the usual scientific method, as taught, to be correct.
Few advances are made by testing hypotheses. Most discoveries are made by people who have learned the
right level of self-skepticism, and are careful enough that when something
unusual happens, something that they can't explain by other means, they pay
attention.
I
believe in the dictum of the novelist: show, don't tell. After a semester of seeing real
science, covering the most important and urgent topics, students get a real
sense of what science knows and doesn't.
For more, see the next topic, "question periods".
Question periods
I always take the first ten minutes to answer questions on any
topic. It can be something
advanced, such as "what do you think of string theory", something technical,
"am I anonymous on the internet?", or just an urban legend, "do
cell phones ignite gasoline at filling stations?" My willingness to show when I don't
know the answer, but the educated guesses that I make based on physics,
demonstrate the honest that is at the core of the scientific method. For some students, this is the part of
the course they enjoy the most.
The material is always interesting, topical, and they can listen without
the stress of thinking that they will be tested.
Commencement
The text does not try to be complete, that is, it does not try
to cover every important aspect of the issues it discusses. It is impossible and unreasonable to
try to do that. There is too
much. This course is not meant to
be a complete survey, and this book is not meant to be used as a complete
reference text. Rather, the PffP
approach is meant to be a commencement for the student into a life full of
understanding and appreciation of science. In some sense, it doesnŐt matter what the student learns, as
long as he learns a lot. If this
course serves as an introduction to physics, and as a demonstration that
advanced material is not beyond the reach, then the student will learn far more
in the years following this course then he could possible learn in one
semester.
Memorizing
Unlike physics students, liberal arts students don't mind
learning numbers and facts. They
are empowered when they know things, such as what really happened at Chernobyl,
how many people died of cancer at Hiroshima, what can spy satellites really do
(and not do), what is Moore's Law (most students never heard of it), what is
the difference between MRI, CAT and PET scans. I tell them that whatever their point of view is, knowledge
will help them. They will be able
to win arguments with their friends and parents. They seem to be particularly happy with the latter. Of course, it is also conceivable that
as they learn the facts, some of them will change their minds on some
technological issues.
Fun
Learning is one of the greatest joys in life. Give a child a choice: the chance to
learn how to ride a bike, or to have unlimited icecream for an hour. Most children will pick the former. It is a great feeling to learn. Perhaps
the only greater joy is when you use that learning to contribute something to
others.
Yet
most students have that joy of learning beaten out of them, maybe by bad
teachers. Yes, learning is hard,
just like playing baseball is hard, or playing a video game is hard. The trick is not minding that it is
hard. Rediscover the joy of
learning. When that happens, the student will learn with much less effort. The student will be able to devote half
the time to studying, but will learn twice as much.
The
material in this course is fascinating.
The student should find it riveting. If that doesnŐt happen, then itŐs because the student has
lost sight of the joy of learning.
Tell the student that the trick to learning the huge amount of material
present here is to find it interesting.
That should be easy, because it is. When the student recognizes that fact, then the automatic
learning mechanism turns on. How
can you forget things that are interesting, fascinating, intriguing, and
important? Encourage the students
to discuss this material with their friends. Have them present interesting
facts to physics majors, and chose the facts that the physics major probably
doesnŐt know. Tell the students to
discuss nuclear power, radioactivity, energy, lasers, computers, UFOs,
earthquakes, everything in this course, with their parents and friends. Anything they discuss with others in
this manner (not to study, but to inform others) will be material that they
will never forget.
ABOUT THE AUTHOR
Richard Muller is a Professor of Physics at the University of
California, Berkeley, and a Faculty Senior Scientist at the Lawrence Berkeley
Laboratory. He is known for his
broad range of achievements, in fields ranging from particle physics to
geophysics, applied physics, and astrophysics. His skill at explaining science
to non-scientists was honed over decades of advising top business and
government leaders. For 34 years he was a Jason consultant to the U.S.
government on national security.
He
grew up in the South Bronx, and walked north to see New York Yankee games. Neither of his parents finished high school. He attended PS 65, went to the Bronx
High School of Science, and then
Columbia College. At
Columbia he loved the "core curriculum" in which all students, both
liberal arts and science majors, take the same classes. He is proud of the fact that his
diploma doesn't even mention his major (which was physics). Education shouldn't
be too specialized.
Muller
went to graduate school at Berkeley, where he studied under (soon to be) Nobel
Laureate Luis Alvarez. After he earned his Ph.D. (in particle physics) he
instigated a series of innovative physics projects, including a study of the
cosmic microwave radiation (about which he wrote a Scientific American Article
in 1978), a new way to measure radioisotopes (called "Accelerator Mass
Spectrometry"), and a project to discover supernovae (exploding stars) for use in
cosmology. He coined the name
"Nemesis" for a star that he and his colleagues suggested is orbiting
the sun at great distance. He has
published major papers on the analysis of lunar soil, adaptive optics,
paleoclimate, reversals of the Earth's magnetic field, and analysis of cycles
in the fossil record. He recently
wrote an article called "Meteorites and the Shield of Achilles."
Muller
was appointed to the faculty at Berkeley in 1980. For many years, he taught the courses designed for physics
majors. In 2001, he was asked to
teach the course for liberal arts students, then dubbed Physics for Poets. He
completely revised the course, and wrote the present book to accompany it.
He
is the author of several other books: Nemesis (about dinosaur extinctions,
1988), The Three Big Bangs (with Phil Dauber, 1996), Ice Ages and Astronomical
Causes (with Gordon MacDonald, a technical introduction to paleoclimate study,
2000), and The Sins of Jesus
(1999, a novel in which Jesus is depicted as a prophet, with no supernatural
powers). For three years he wrote
a monthly column for MIT's Technology Review, "Technology for Presidents", based on his course PffP
at Berkeley. His articles illuminate world affairs by bringing in relevant
physics. They are available on his
website (address below).
His
work has been honored by many awards, including the Alan T. Waterman Award of
the National Science Foundation, the Texas Instruments Founders Prize, and a
MacArthur Foundation Prize Fellowship.
He was listed by Newsweek Magazine in 1989 as one of the top 25
innovators in the United States.
He is a fellow of the American Physical Society, the American
Association for the Advancement of Science, and the California Academy of Arts
and Sciences. Muller won a
Distinguished Teacher Award at Berkeley in 1999.
The
photo was taken by his wife Rosemary, in Place Jamaa el Fna in Marrakech,
Morocco. Yes, it is a real
cobra. For more information
and photos, visit his web site
www.muller.lbl.gov